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SUMMARY The global public health community has set ambitious treatment tar-
gets to end the HIV/AIDS pandemic. With the notable absence of a cure, the goal of
HIV treatment is to achieve sustained suppression of an HIV viral load, which allows
for immunological recovery and reduces the risk of onward HIV transmission. Moni-
toring HIV viral load in people living with HIV is therefore central to maintaining
effective individual antiretroviral therapy as well as monitoring progress toward
achieving population targets for viral suppression. The capacity for laboratory-based
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HIV viral load testing has increased rapidly in low- and middle-income countries, but
implementation of universal viral load monitoring is still hindered by several barriers
and delays. New devices for point-of-care HIV viral load testing may be used near
patients to improve HIV management by reducing the turnaround time for clinical
test results. The implementation of near-patient testing using these new and emerg-
ing technologies may be an essential tool for ensuring a sustainable response that
will ultimately enable an end to the HIV/AIDS pandemic. In this report, we review
the current and emerging technology, the evidence for decentralized viral load mon-
itoring by non-laboratory health care workers, and the additional considerations for
expanding point-of-care HIV viral load testing.

KEYWORDS AIDS, HIV, differentiated care, point-of-care, viral load

INTRODUCTION

Currently, over 20 million people living with HIV (PLHIV), mostly in low- and
middle-income countries (LMICs), are receiving antiretroviral therapy (ART) (1). The

World Health Organization (WHO) recommends that all PLHIV be offered ART, regard-
less of CD4 count, which means that almost 20 million more people still require
treatment (2). In the absence of a cure, the goal of providing ART is to achieve HIV
virological suppression, which has been defined as an HIV viral load (VL) of �1,000
copies/ml. PLHIV who achieve virological suppression have more robust immune
reconstitution, better clinical outcomes, and lower mortality rates (3). Furthermore,
PLHIV who maintain an undetectable viral load have effectively no risk of sexual
transmission to an HIV-negative partner, which has become the message of the U � U
(Undetectable � Untransmittable) campaign (4).

The Joint United Nations Programme on HIV/AIDS (UNAIDS) launched the 90-90-90
project to achieve the following goals by the year 2020: (i) identify 90% of all PLHIV, (ii)
initiate 90% of all PLHIV who know their status on ART, and (iii) maintain viral
suppression among 90% of all PLHIV receiving ART (5). To reach these targets, coordi-
nated efforts are required to diagnose PLHIV and initiate ART, as well as to provide
ongoing care for those already on ART. Innovative models of care delivery and patient
monitoring, including advanced diagnostic tools, provide opportunities to further
accelerate progress toward high levels of HIV viral load suppression.

Despite scale-up of routine viral load monitoring in LMICs, viral load test results do
not always lead to appropriate clinical action, including adherence counselling and
follow-up viral load testing, to improve the HIV cascade of care. In Swaziland, one-third
of PLHIV with viremia (�1,000 copies/ml) received appropriate adherence counseling
(6, 7). In South Africa, fewer than 20% of PLHIV with viremia (�1,000 copies/ml)
received a follow-up viral load test within 3 months (8, 9). A separate study in four
South African provinces reported a median time from viremia (�1,000 copies/ml)
to confirmation of virological failure of 30 weeks (interquartile range [IQR], 17 to
53 weeks), and the median time from viremia to ART regimen switch was 68 weeks (IQR,
35 to 124 weeks) (10, 11). While these problems may reflect broader weaknesses in the
public health systems, point-of-care (POC) VL testing could expedite detection of
viremia, thereby increasing viral resuppression and reducing community viral loads.

Diagnostic POC tests have rapidly emerged and are expanding into laboratories and
clinics in high-income countries and in LMICs (12). In recent years, several POC HIV viral
load tests have become available, and more are expected soon (13). These new
technologies have the potential to decentralize and expand viral load coverage,
enhance efficiency in health care services, and improve viral suppression. POC HIV viral
load assays are important to measure individual treatment success as well as monitor
the overall progress in achieving the goals of the HIV care and treatment. However,
several important technological challenges and clinical research questions remain. In
this review, we highlight the existing technologies for POC HIV viral load testing, the
existing evidence for decentralized testing by health care workers within HIV programs,
and evidence from modeling and cost-effectiveness studies.
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TECHNOLOGIES FOR POC HIV VIRAL LOAD TESTING
Requirements of an Ideal POC HIV Viral Load Test

A variety of molecular platforms exist for accurate, high-throughput HIV viral load
testing, but they require sophisticated laboratory infrastructure and highly skilled
laboratory technicians. The logistical requirements to reliably transport samples to
centralized laboratory facilities, which include scheduling specimen pick-up and main-
taining sample integrity, can also present challenges. POC assays may allow testing
outside of centralized laboratories but face a variety of constraints (12). In more remote
clinical settings with fewer resources, the assays must remain functional under extreme
environmental conditions (e.g., high temperature, humidity, and dust), have minimal
reliance on a power supply, allow for simple sample collection, and feature automated
equipment to allow for operation by users following minimal training (13–15).

In 2013, the International Diagnostics Centre presented a draft target product profile
(TPP) review for a POC HIV viral load test (16). We have modified those criteria to make
them more appropriate for emerging technologies (Table 1). In brief, test results should
be rapid, accurate, and unambiguous, in order to be actionable during the patient visit
and archivable to a centralized management system to record and monitor test
volumes, results, and error rates (17–19). A POC HIV viral load assay must provide
information on the level of viremia consistent with clinical standards for indicating
virological failure, the threshold of which is currently defined by the WHO as 1,000 RNA
copies/ml (2). Given the availability of newer medications with greater efficacy for
maintaining viral suppression, newer POC HIV viral load assays should achieve a lower
limit of quantification, 200 copies/ml. In addition, any POC HIV viral load assay must be
easy to use by local health care workers with a minimal amount of training. With POC
viral load testing, it is crucial that diagnostic accuracy is established in a wide range of
HIV subtypes that represents global HIV subtype diversity. Finally, the capital equip-
ment, consumables, and service conditions must be affordable to resource-limited HIV
programs that are funded by governments in LMICs and global donors.

Currently Available Tests

We provide an update to a prior landscape review with details on POC HIV viral load
tests, describing three products that are commercially available and one project near
commercialization in India, Africa, and South America by Molbio Diagnostics (Table 2
and Fig. 1) (14). We excluded the COBAS Liat system (formerly the IQuum Liat HIV viral
load assay), which demonstrated good diagnostic accuracy in two validation studies
(20, 21), as the technology has been acquired by Roche and further development has
been postponed. Among products from six companies that were previously described
as being in the early to middle development stages (14), only one product (Molbio
Diagnostics; Goa, India) is still being actively advanced (22, 23).

m-PIMA by Abbott. The Alere q instrument and assays were recently rebranded to
m-PIMA after the acquisition of Alere by Abbott (Abbott Park, IL, USA). The instrument

TABLE 1 Ideal product attributes for POC HIV viral load test

Domain Optimal criteria

Goal Quantification of HIV RNA viral load copies/ml
Limit of detection 200 HIV RNA viral load copies/ml
Precision Less than 0.3 log10 HIV viral load copies/ml, as compared to reference gold standard test
Time to results Less than 30 min total
Throughput Minimum of 15 tests per 8-h workday
Equipment Small, portable, and robust, with uninterrupted power supply for use in primary health care clinics at

a wide range of temperatures
Sample specimen Finger capillary whole blood (maximum, 200 �l) or heel stick for young children; dried blood spot

would be acceptable
Simple operation The device should be capable of being used by health care workers, including technicians, nurses,

and physicians, after a minimal amount of training
Quality control Internal full positive and full process negative controls to monitor individual test results
Patient identification Results can be easily linked to a specific patient
Data export for quality assurance Full data export over mobile phone network with computer or tablet interface
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is a rugged, battery-powered instrument designed for fully automated processing to
enable testing outside of a laboratory (Table 2) (24). The technology uses real-time
reverse transcriptase PCR (RT-PCR) monitored via competitive reporter hybridization to
the amplified target sequence and can quantify HIV-1 RNA from groups M, N, and O, in
addition to HIV-2. The m-PIMA is the only POC assay to measure HIV-2 viral load. The
lower limit of quantification is 800 to 1,000 copies/ml. The test cartridge contains all
required reagents and has a capillary port to introduce 50 �l of plasma that must be
separated from venous or capillary whole blood. Such a step requires a refrigerated
centrifuge and adds further 15 to 20 min to the test processing time, with a refrigerator
required to store the samples prior to adding to the test cartridge. The cartridge is
sealed and inserted into a single-module automated instrument that contains internal
quality control measures, and the total time to result is approximately 70 min, exclud-
ing plasma separation. Abbott has a qualitative HIV-1/2 test, the Alere q HIV 1/2 Detect
qualitative viral load assay for EID (early infant diagnosis), that had received WHO
prequalification (PQ) status in 2016 for the diagnosis of HIV-positive children and adults
using whole blood (25). In an early study comparing the whole-blood Alere q NAT POC
viral load against the Roche Cobas Ampliprep/Cobas TaqMan v2 using plasma, the
Alere q had a mean bias of 0.86 log copy/ml, a Pearson coefficient of 0.59 (confidence

FIG 1 Point-of-care HIV viral load equipment and test cartridges currently marketed (A to F) or in development (G to K). Attendant key equipment for some
devices, such as modems, barcode scanners, or printers, is not included. (A) The Abbott m-PIMA analyzer; (B) the Abbott m-PIMA HIV-1/2 test cartridge; (C) the
Cepheid GX4 instrument; (D) the Cepheid Xpert HIV-1 viral load test cartridge; (E) the DRW SAMBA II test module with controller; (F) the DRW SAMBA II plasma
semiquantitative test; (G) the Cepheid Omni instrument and controller; (H) the Molbio Diagnostics Trueprep sample preparation device; (I to K) the Molbio
Diagnostics Truelab amplification instruments in Uno (I), Duo (J), and Quattro (K) module formats. (Images are reprinted with permission of the respective
manufacturers.)
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interval [CI] not provided), and a sensitivity and specificity to detect a viral load �1,000
copies/ml of 96.8% (95% CI, 92.1% to 99.1%) and 47.8% (95% CI, 42.2% to 53.4%),
respectively (24). These results reflect the difficulty of separating cell-associated DNA
from whole-blood specimens. More recent evaluations of the quantitative m-PIMA
HIV-1/2 viral load assay remain unpublished; the assay received CE-IVD marking in
December 2018 and is currently undergoing review by the WHO PQ program (26).

GeneXpert by Cepheid. Cepheid produces the Xpert HIV-1 viral load assay, which
has received WHO PQ and CE-IVD marking (Table 2) (27). The assay requires 1 ml of
plasma, and a 15- to 20-min blood fractionation step using a refrigerated centrifuge is
necessary prior to testing (28). The assay uses real time RT-PCR with molecular beacons
to target RNA from HIV-1 group M (including subtypes A, B, C, D, F, G, H, J, K, CRF01_AE,
CRF02_AG, and CRF03_AB), group N, and group O (http://www.cepheid.com/en/
cepheid-solutions/clinical-ivd-tests/virology/xpert-hiv-1-viral-load). On-cartridge sam-
ple processing and test analysis are automated, with the total machine processing time,
not including plasma separation, taking approximately 90 min. The cartridge can be
used in GeneXpert machines, which also run similar cartridge tests for tuberculosis (TB),
sexually transmitted infections (STIs) and other infections (30). The machines require
temperatures below 30°C and dust-free environments, which restrict their use to
controlled settings (31, 32). While they may be considered near POC, several modifi-
cations using batteries and even solar panels have enabled its implementation outside
of traditional laboratories (33, 34). Cepheid has been developing the Omni, a battery-
powered mobile instrument capable of processing a single test cartridge at the clinical
point of care (30). Test cartridges for the Omni are fitted with a near-field communi-
cation chip, instead of a barcode, to activate the instrument. In July 2018, Cepheid
launched the GeneXpert Edge for decentralized testing while working to fix production
issues for Omni, which can be battery operated and controlled via tablet instead of
computer.

A variety of studies conducted in high- and low-income settings have compared the
diagnostic accuracy of the Xpert HIV-1 viral load assay to those of conventional
laboratory assays, including the Abbott RealTime HIV-1 m2000rt (Abbott Molecular)
(35–40), Roche COBAS AmpliPrep/COBAS TaqMan (Roche Diagnostics) (41–44), Nu-
cliSENS EasyQ HIV-1 v2.0 (bioMérieux) (45), and Versant HIV-1 RNA 1.5 assay (Siemens
HealthCare Diagnostics) (46). In a recent meta-analysis of these studies, the pooled
Pearson coefficient was 0.94 (95% CI, 0.89 to 0.97; n � 8 studies) and the pooled
Spearman coefficient was 0.96 (95% CI, 0.86 to 0.99; n � 3), demonstrating good
correlation with laboratory reference results (50). The Xpert HIV-1 had a mean bias of
within 0.35 log copy/ml of the reference viral load assays. Variability in viral load
thresholds meant that pooling of results for sensitivity and specificity was not per-
formed. However, for WHO prequalification, the Xpert HIV-1 viral load assay had 94%
sensitivity and 99% specificity for detecting HIV viral loads of �1,000 copies/ml (27). In
one study, the Xpert HIV-1 did not detect a viral load in one patient with high titers of
an HIV-1 CRF02_AG subtype variant, which had a 25-nucleotide insert that was not
matched to reference wild-type sequences (42). The concordance between the Xpert
HIV-1 and the reference Roche TaqMan 2.0 was high among other patients with
CRF02_AG subtype, which is predominant in West Africa (42). The authors of the
meta-analysis noted that the Xpert HIV-1 assay could be of significant value to
decentralized HIV viral load testing due to its accuracy, ease of use, and relatively low
infrastructure requirements (50). The Xpert HIV viral load assay, used in mobile
community-based clinics in Botswana, showed high levels of agreement across a broad
range of HIV-1 RNA values with the Abbott m2000sp/m2000rt comparator and that its
use in rural communities (after home-based collection of venous blood) was feasible
(38). However, to date there are no published studies demonstrating whether it is
feasible to provide same-day, true POC viral load results using the Xpert HIV-1 in
programmatic settings in LMICs. Instead, the need for centrifugation may prevent the
Xpert HIV-1 from being used as a true POC test. Currently, there are three ongoing trials
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of this assay being conducted in the United States and/or sub-Saharan Africa
(NCT03187964 [47], NCT03533868 [48], and NCT03066128 [49]).

SAMBA by Diagnostics for the Real World. Diagnostics for the Real World (DRW)
has developed a simple amplification-based assay (SAMBA) for semiquantitative HIV
viral load measurement, called SAMBA semi-Q (https://www.drw-ltd.com/copy-of
-samba-overview). The SAMBA I system has a semiautomated format with separate
sample preparation, amplification, and detection units capable of processing four
samples simultaneously (Table 2). The SAMBA II system is a fully automated modular
system, comprised of a tablet-based controller module and up to four processing units
per controller. The sample extraction, amplification and detection components are
contained within a single sealed cartridge. The SAMBAs use nucleic acid based-
sequence amplification (NASBA) (52), an RNA-based isothermal amplification method to
amplify HIV-1 RNA, detecting the single-stranded NASBA amplicons via sequence-
specific oligonucleotide capture followed by colorimetric detection on a nitrocellulose
strip (53). The time to process a specimen is approximately 90 min. The test result is
visually scored on a lateral flow assay (LFA) format with a viral load threshold of 1,000
copies/ml. The SAMBAs currently use plasma, adding 15 to 20 min to the test process-
ing time and requiring a refrigerated centrifuge, although a whole-blood testing format
is in development (54, 55). The SAMBA I semi-Q prototype assay had a reported 96.6%
(CI not reported) concordance with the Roche COBAS AmpliPrep/COBAS TaqMan (57).
In a later study, the SAMBA HIV-1 Semi-Q on the SAMBA I demonstrated 98.1% (95% CI,
96.5% to 99.1%) concordance with the Roche TaqMan 2.0 assay (56). However, in these
two analyses, any result on the Roche TaqMan 2.0 that was between 500 and 2000
copies was automatically considered concordant with the SAMBA result, which may
have biased the concordance results. In a separate analysis, the SAMBA HIV-1 Semi-Q
on the SAMBA II was found to have 98.0% (95% CI, 94.3% to 99.6%) concordance with
the Abbott RealTime assay (56).

Molbio Diagnostics. Molbio Diagnostics intends to launch an HIV viral load device
in 2019 (Table 2). According to the manufacturer, the technology uses real-time RT-PCR
and can quantify HIV RNA from HIV-1 group M with a lower limit of quantification, 500
copies/ml. The testing process is fully automated using tabletop-based battery pow-
ered instruments, but sample preparation and subsequent amplification and detection
occur in two separate instruments (22, 23). The total time to test results is approxi-
mately 55 min, which includes a 20-min sample preparation step to process either
whole blood or plasma, though a further 15 to 20 min is required to first separate the
plasma. The amplification and detection of the RNA extracts are performed on a test
chip containing all necessary reagents. The current equipment is a single-, two-, or
four-module instrument that uses an Android software platform for processing test
chips, storing data, and communicating results and test location via mobile telephone
networks (Fig. 1). Currently, there are no published evaluations of the Molbio assay.

Technologies To Advance Next-Generation Tests

While several commercial near-POC HIV viral load tests are available or in late-stage
development, further innovation is required to reduce test time, enable the use of
whole blood as a starting sample, lower the costs of capital equipment and disposable
test cartridges, and improve assay sensitivity and quantitative accuracy. HIV viral load
testing is a complex, multistep process requiring sample collection, blood fractionation,
viral lysis, RNA extraction, amplification, and detection, and communication of test
results (Fig. 2). Sample preparation is a significant challenge for “sample-to-answer”
viral load tests requiring automation of blood fractionation, virion lysis, and nucleic acid
extraction prior to downstream amplification and detection.

POC viral load testing should be conducted on whole blood, via either venipuncture
(0.2 to 2 ml), heel prick, or finger prick sampling (�200 �l) (58, 59). Plasma separation
has been used to remove red blood cells and peripheral blood mononuclear cells
(PBMCs) that can inhibit nucleic acid amplification tests or cause spurious results by
inclusion of proviral DNA (60, 61). Several equipment-free solutions for integrated
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plasma separation have emerged to eliminate additional user steps (62). Sedimentation
techniques often require microchip fabrication and struggle to process volumes greater
than 5 to 10 �l of undiluted blood (63–65). Other techniques using separation mem-
branes, which can be sized to process large sample volumes, are easier to integrate in
paper-based assays (66–70).

A crucial step is thorough lysis of the HIV virion, which degrades the lipid and
protein viral envelope that encapsulates RNA strands. Lysis can be achieved by heating,
detergents, enzymes, or chaotropic salts (71–74). After virion lysis, efficient isolation of
highly purified HIV RNA is required, as even trace amounts of inhibitors can significantly
affect performance of quantitative amplification. Solid-phase, silica-based extraction
methods are used in gold standard tests (75) and have been translated into POC
microfluidic or paper-based formats (76–78). Silica-based extraction requires exchanges
of wash and elution buffers, a task difficult to automate in simple POC devices. Several
single-step nucleic acid purification strategies have been developed in paper-based
devices, such as chitosan-coated membranes (79) and electrophoretic separation of
nucleic acids from blood (69). Despite these recent advancements in sample prepara-
tion techniques, automating HIV lysis and RNA extraction from blood samples remains
a formidable challenge (80–83).

Real-time PCR has long been the staple of nucleic acid amplification testing (NAAT),
including most of the current gold standard viral load tests (74). PCR assays are difficult
to implement in POC devices due to the significant power demands of thermocycling
and the need for highly purified nucleic acids. Other options may include isothermal
amplification techniques, such as loop-mediated isothermal amplification (LAMP) (84,
85), helicase dependent amplification (86), and recombinase polymerase amplification
(87). Isothermal assays do not require thermal cycling and therefore have reduced
power demands and require less time for amplification. While isothermal methods are
convenient for POC implementation, few assays have demonstrated reliable quantita-
tive results (88–90). For researchers developing HIV viral load isothermal amplification
assays, the primary challenge remains demonstrating quantitative accuracy comparable
to that of real-time PCR across wide ranging viral loads (103 to 106 copies/ml) and
subtypes.

FIG 2 Examples of various steps which must be integrated into potential POC HIV viral load tests. (A)
Sample collection should be simple to perform and provide precise volume metering. (B) Membrane-
based plasma separation to exclude proviral HIV DNA in PBMCs. (C) Viral lysis using a detergent to
denature the viral envelope and release HIV RNA. (D) Magnetic bead-based RNA extraction to purify RNA
from blood-related inhibitors and lytic agents. (E) Amplification of nucleic acids to detectable concen-
trations. (F) Algorithm and device to provide quantitative results and communicate results to electronic
health records (EHR).
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While not unique to POC testing, NAAT for HIV is also complicated by the virus’s
high rate of mutation, recombinant forms, and different clades associated within
regions of high prevalence (74, 91). NAATs can account for sequence diversity with
degenerate primers (91), long primers capable of tolerating mismatches (87) and
targeting highly conserved regions of the HIV genome (92, 93). Still, the HIV sequence
diversity can impact the performance of an assay, especially when applied to a variety
of subtypes (94).

When it comes to readout, quantitative NAATs most commonly use fluorescence-
based methods to detect amplification (14), while LFA-based detection methods can
provide semiquantitative results (95). Additional strategies have targeted reverse trans-
criptase activity (58) or optically sense virus particles (96). While recent studies have
reported innovative devices integrating NAAT operations, these platforms used assays
for various infectious diseases, with no specific demonstration of HIV detection or
quantification (69, 78, 97–100).

Moving forward, the central challenge facing POC HIV viral load tests is automating
all diagnostic steps, including sample preparation and amplification, ideally in a manner
that circumvents the high electrical power demands and instrumentation costs for
robotics, optics, or pumps. Additionally, test developers face an obstacle in the target
product profile, which proposes an optimal limit of detection of 200 copies/ml and
sample specimen of less than 200 �l of finger capillary blood (Table 1). A low sample
volume reduces the number of input of virions, elevating the limit of detection. HIV viral
load tests will need to improve efficiency of sample preparation and sensitivity of
amplification assays to achieve a low detection limit via capillary blood.

GENERATING THE EVIDENCE FOR IMPLEMENTATION OF DECENTRALIZED HIV
VIRAL LOAD TESTING

Approaches to improve the delivery of HIV viral load testing that are effective,
scalable, and sustainable are urgently needed, but under resource constraints, the
allocation of resources for decentralizing HIV viral load testing should be based on
evidence (101–104). If health facility factors are not properly taken into consideration,
then implementation of decentralized HIV viral load testing will be jeopardized (105,
106). Introducing new diagnostic devices into clinics with heavy workloads may cause
disruptions in the clinical workflow (107), which can result in a loss of efficiency and a
decline in service quality (108, 109). Alternatively, the experience of staff in primary
health facilities with routine use of rapid diagnostic tests (RDTs) for HIV diagnosis may
facilitate the expansion of POC HIV viral load testing (110). An assessment of the
barriers and facilitators is required to address challenges at both the facility and health
system levels (111–117). In a systematic review of 132 studies, the most common
barriers to POC implementation in HIV programs were related to integration into
clinical practice, followed by concerns regarding diagnostic accuracy (29).

Evidence and Results from Clinical Studies

The implementation of RDTs for HIV (118) and CD4 count testing (119, 120) at the
point of service has resulted in improvements of the HIV care cascade (121). A case in
point is the use of qualitative POC technologies for early infant diagnosis (EID). A field
evaluation in South Africa comparing POC Xpert HIV-1 Qual and lab-based molecular
platforms showed that decentralized EID testing was accurate and increased the rate of
result return when used in a maternity hospital (122). A recent cluster randomized
clinical trial in Mozambique (123), and an observational study in Malawi (124), showed
that the qualitative Alere q HIV-1/2 Detect accelerated the time to ART initiation, with
an associated increase in the proportion of HIV-positive infants who were initiated on
ART within 180 days of sample collection (90.3% and 91.1%, respectively), compared to
standard centralized laboratory testing (40.2% and 48.4%, respectively). More recent
evidence comes from a large POC EID program evaluation incorporating over 20,000
tests into routine clinical services as part of a “hub and spoke” design, which reduced
sample turnaround time across 339 clinical sites in 8 African countries (125). The
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proportion of HIV-positive infants who were initiated on ART by 60 days increased from
43.3% to 92.3%, with cost per result returned in 30 days decreasing from $131 (U.S.
dollars) with conventional referral laboratory testing to $38 with POC testing. In a study
for diagnosing acute HIV infection, 91% of the patients attending a community clinic in
Spain were notified of their HIV-positive status the same day using the Xpert HIV-1 Qual
assay (126). These studies demonstrate that POC platforms can be successfully imple-
mented in a number of settings and have led to guidelines for the introduction of HIV
POC diagnostics into national programs (127). The WHO recommended POC EID
testing, and a programmatic update in 2016 confirmed that POC EID assays can be used
for confirmatory testing (2).

Several randomized clinical trials in LMICs are investigating the clinical impact of
POC HIV viral monitoring for PLHIV receiving ART (Table 3). Study populations vary but
include children, adolescents, adults, and pregnant women, with interventions of POC
viral load test alone or combined with new models of HIV care. Most studies include
viral suppression as an outcome, alongside various process evaluation measures.

Results from an observational study in Zimbabwe (32) suggest that implementation
of Xpert HIV-1 Viral Load for ART monitoring is feasible in this setting. In addition, use
of the GeneXpert platform allows multidisease POC testing for sexually transmitted
infections, tuberculosis, and hepatitis C (128, 129). The same study in rural Zimbabwe
showed that multidisease POC testing with GeneXpert at district and subdistrict health
care facilities was achievable but relied on supervision and quality management
systems to ensure the accuracy of testing services (32). In some countries, large-scale,
centralized HIV viral load testing is being performed using dried blood spot cards
(130–132). The diversity of approaches that have shown promise implies that a com-
bination of centralized and decentralized models should be considered for scale-up
(133, 134).

Regulatory Issues, Quality Assurance, Supply Chain, and Data Connectivity

The lessons learned from establishing centralized models for HIV viral load testing
could inform building networks for decentralized testing (135–137). Some challenges
would be bypassed by POC testing, such as sample transportation. However, experi-
ence and planning for supply chain, reagent forecasting, human resources, mainte-
nance of equipment, and laboratory-clinic interfaces would remain relevant for both
centralized and decentralized HIV viral load testing (138–142).

Decentralizing HIV viral load requires that resources and processes are in place for
training, monitoring, and quality assurance of test results at the clinic sites (143, 144).
Unclear national regulatory pathways pose a challenge (145, 146), increasing the risk of
delayed marketing of POC devices across neighboring countries in East Africa (147).
Ensuring quality of POC testing through an external quality assessment (EQA) program
poses numerous challenges, as the costs of setting up and maintaining such programs
are often underestimated (148). The use of digital technologies can support strength-
ening EQA activities and supply chains within a network of peripheral testing centers
using POC technologies (149, 150), but their full potential has not yet been realized due
to issues around data ownership and confidentiality (151).

ROLE OF TASK SHIFTING FOR DIFFERENTIATED HIV CARE

Task shifting has been effectively implemented to facilitate HIV diagnostic screening
and CD4 count testing activities and may be an effective strategy for POC HIV viral load
testing in decentralized settings (18, 152, 153). A key consideration for decentralized
HIV viral load testing is who will perform the test. Task shifting from physicians to
nurses, and nurses to community health care workers has been successfully imple-
mented for both the diagnosis and management of HIV (154–156). Task shifting in
LMICs has facilitated the creation of innovative “differentiated care” services, which
have increased health care coverage, improved monitoring, and reduced costs. How-
ever, the decentralization of POC HIV viral load testing poses a new set of opportunities
and challenges at both facility and health system levels (113–117).

Drain et al. Clinical Microbiology Reviews

July 2019 Volume 32 Issue 3 e00097-18 cmr.asm.org 10

https://cmr.asm.org


TA
B

LE
3

Ra
nd

om
iz

ed
co

nt
ro

lle
d

tr
ia

ls
as

se
ss

in
g

cl
in

ic
al

im
p

ac
ts

of
PO

C
H

IV
vi

ra
l

lo
ad

te
st

in
g

C
lin

ic
al

tr
ia

l
Lo

ca
ti

on
St

ud
y

p
op

ul
at

io
n

In
te

rv
en

ti
on

s
O

ut
co

m
es

Es
ti

m
at

ed
co

m
p

le
ti

on
d

at
e

ST
RE

A
M

,N
C

T0
30

66
12

8
(4

9)
Si

ng
le

si
te

,S
ou

th
A

fr
ic

a
39

0
no

np
re

gn
an

t
ad

ul
ts

on
A

RT
w

ho
ar

e
du

e
a

vi
ra

l
lo

ad
te

st
at

6
m

o
af

te
r

in
iti

at
io

n

PO
C

m
on

ito
rin

g
in

cl
ud

in
g

X
p

er
t

H
IV

-1
vi

ra
l

lo
ad

te
st

in
g,

co
m

b
in

ed
w

ith
ta

sk
sh

ift
in

g
to

en
ro

lle
d/

au
xi

lia
ry

nu
rs

es
,v

er
su

s
st

an
da

rd
of

ca
re

Pr
im

ar
y:

(i)
Pr

op
or

tio
n

of
p

at
ie

nt
s

w
ho

ar
e

re
ta

in
ed

in
ca

re
w

ith
vi

ra
l

su
p

p
re

ss
io

n
at

�
20

0
co

p
ie

s/
m

l
at

12
m

o
af

te
r

en
ro

llm
en

t
(1

8
m

o
on

A
RT

)
Se

co
nd

ar
y:

(i)
Pr

op
or

tio
n

of
p

at
ie

nt
s

w
ith

vi
ra

l
lo

ad
of

�
1,

00
0

co
p

ie
s/

m
l

12
m

o
fr

om
en

ro
llm

en
t

(ii
)

C
os

ts
p

er
p

at
ie

nt
vi

ro
lo

gi
ca

lly
su

p
p

re
ss

ed
an

d
re

ta
in

ed
in

ca
re

(ii
i)

Ti
m

e
to

de
te

ct
io

n
of

vi
ro

lo
gi

ca
l

fa
ilu

re
,s

ub
se

qu
en

t
in

te
ns

iv
e

ad
he

re
nc

e
co

un
se

lin
g,

an
d

in
iti

at
io

n
of

se
co

nd
-

lin
e

re
gi

m
en

(iv
)

Pr
op

or
tio

n
of

p
at

ie
nt

s
en

te
re

d
ap

p
ro

p
ria

te
ly

in
to

di
ff

er
en

tia
te

d
A

RT
de

liv
er

y
p

ro
gr

am
s

an
d

tim
e

to
ap

p
ro

p
ria

te
en

tr
y

in
to

th
es

e
p

ro
gr

am
s

Q
4

20
18

N
C

T0
32

88
24

6
( 1

89
)

Si
ng

le
si

te
,H

ai
ti

15
0

p
er

so
ns

ag
ed

10
–2

4
yr

s
on

A
RT

fo
r

�
6

m
o

PO
C

H
IV

vi
ra

l
lo

ad
te

st
in

g
at

en
ro

llm
en

t,
3

an
d

6
m

o
co

m
p

ar
ed

to
st

an
da

rd
la

b
or

at
or

y
te

st
in

g
at

th
e

sa
m

e
tim

e
p

oi
nt

s

Pr
im

ar
y:

(i)
N

um
b

er
of

st
ep

s
in

th
e

H
IV

vi
ra

l
lo

ad
ca

sc
ad

e
Se

co
nd

ar
y:

(i)
C

om
p

re
he

ns
io

n
of

th
e

re
la

tio
ns

hi
p

b
et

w
ee

n
A

RT
ad

he
re

nc
e

an
d

H
IV

vi
ra

l
lo

ad
as

se
ss

ed
1

m
o

af
te

r
re

ce
iv

in
g

vi
ra

l
lo

ad
re

su
lt

(ii
)

Vi
ra

l
su

p
p

re
ss

io
n

at
�

1,
00

0
co

p
ie

s/
m

l
at

6
m

o
fr

om
en

ro
llm

en
t

Q
4

20
18

U
lt

ra
H

IV
N

C
T0

31
87

96
4

( 4
7)

Si
ng

le
si

te
,S

ou
th

A
fr

ic
a

1,
50

0
ad

ul
ts

on
A

RT
w

ho
ar

e
du

e
an

nu
al

H
IV

vi
ra

l
lo

ad
te

st
in

g
(a

no
th

er
co

m
p

on
en

t
of

th
e

st
ud

y
as

se
ss

es
X

p
er

t
U

lt
ra

fo
r

TB
in

a
se

p
ar

at
e

gr
ou

p
of

1,
50

0
ad

ul
ts

)

PO
C

X
p

er
t

H
IV

-1
vi

ra
l

lo
ad

te
st

in
g

at
si

te
ve

rs
us

st
an

da
rd

la
b

or
at

or
y

vi
ra

l
lo

ad
te

st
in

g

Pr
im

ar
y:

(i)
Re

la
te

d
to

TB
co

m
p

on
en

t
of

th
e

st
ud

y.
Se

co
nd

ar
y:

(i)
Pr

op
or

tio
n

of
p

at
ie

nt
s

di
ag

no
se

d
w

ith
vi

re
m

ia
b

y
8

w
ks

(ii
)

O
f

th
os

e
w

ith
vi

re
m

ia
,t

he
p

ro
p

or
tio

n
w

ho
ar

e
id

en
tifi

ed
to

re
qu

ire
ad

he
re

nc
e

co
un

se
lli

ng
an

d/
or

H
IV

re
si

st
an

ce
te

st
in

g
b

y
1

w
k,

ar
e

re
fe

rr
ed

fo
r

ad
he

re
nc

e
co

un
se

lli
ng

an
d/

or
se

co
nd

-li
ne

A
RT

b
y

8
w

ks
,a

nd
do

no
t

su
cc

es
sf

ul
ly

st
ar

t
ad

he
re

nc
e

co
un

se
lin

g,
H

IV
re

si
st

an
ce

te
st

in
g,

or
se

co
nd

-li
ne

A
RT

b
y

12
w

ks

Q
4

20
19

N
C

T0
35

33
86

8
( 4

8)
Tw

o
si

te
s,

N
ig

er
ia

79
4

ad
ul

ts
b

ei
ng

in
iti

at
ed

on
A

RT
PO

C
X

p
er

t
H

IV
-1

Vi
ra

l
Lo

ad
m

on
ito

rin
g

at
6

an
d

12
m

o
fr

om
en

ro
llm

en
t

ve
rs

us
st

an
da

rd
la

b
or

at
or

y
vi

ra
l

lo
ad

Pr
im

ar
y:

(i)
Pr

op
or

tio
n

of
p

at
ie

nt
s

w
ith

vi
ra

l
su

p
p

re
ss

io
n

at
�

1,
00

0
co

p
ie

s/
m

l
at

12
m

o
on

A
RT

Se
co

nd
ar

y:
(i)

A
ve

ra
ge

ad
he

re
nc

e
fr

om
p

ha
rm

ac
y

re
fil

l
da

ta
(ii

)
Lo

ss
to

fo
llo

w
-u

p
at

12
m

o
(ii

i)
Ti

m
e

to
ad

he
re

nc
e

co
un

se
lli

ng
,c

on
fir

m
at

io
n

of
vi

ro
lo

gi
ca

l
fa

ilu
re

an
d

sw
itc

h
to

se
co

nd
-li

ne
A

RT
(iv

)
Ti

m
e

fr
om

sp
ec

im
en

co
lle

ct
io

n
to

re
su

lt
av

ai
la

b
ili

ty
an

d
co

m
m

un
ic

at
io

n
to

p
at

ie
nt

(v
)

H
IV

dr
ug

re
si

st
an

ce
p

at
te

rn
s

(v
i)

Pa
tie

nt
an

d
he

al
th

ca
re

w
or

ke
r

sa
tis

fa
ct

io
n

Q
4

20
19

RA
PI

D
-V

ira
l

Lo
ad

N
C

T0
35

53
69

3
( 1

90
)

20
si

te
s,

U
ga

nd
a

2,
44

0
ch

ild
re

n,
ad

ol
es

ce
nt

s,
an

d
ad

ul
ts

on
A

RT
,

in
cl

ud
in

g
p

re
gn

an
t

w
om

en
an

d
p

at
ie

nt
s

w
ith

un
su

p
p

re
ss

ed
H

IV
vi

ra
l

lo
ad

s

RA
PI

D
-V

ira
l

Lo
ad

st
ud

y
in

te
rv

en
tio

n
te

st
in

g
an

d
co

un
se

lli
ng

p
ac

ka
ge

,
w

hi
ch

in
cl

ud
es

ne
ar

-p
oi

nt
-o

f-
ca

re
H

IV
vi

ra
l

lo
ad

te
st

in
g

at
lo

ca
l

te
st

in
g

hu
b

s,
st

ru
ct

ur
ed

vi
ra

l
lo

ad
co

un
se

lin
g,

an
d

fo
rm

s
to

tr
ac

k
vi

ra
l

lo
ad

or
de

rin
g

an
d

te
st

in
g,

w
ith

fe
ed

b
ac

k
an

d
p

er
fo

rm
an

ce
ev

al
ua

tio
ns

at
re

gu
la

r
in

te
rv

al
s

Pr
im

ar
y:

(i)
Pr

op
or

tio
n

of
p

at
ie

nt
s

w
ith

H
IV

vi
ra

l
lo

ad
or

de
re

d
w

he
n

in
di

ca
te

d
b

y
co

un
tr

y
gu

id
el

in
es

(ii
)

M
ea

n
tim

e
to

de
liv

er
in

g
H

IV
vi

ra
l

lo
ad

re
su

lt
to

p
at

ie
nt

Se
co

nd
ar

y:
(i)

H
IV

vi
ra

l
lo

ad
su

p
p

re
ss

io
n

at
12

m
o

fr
om

en
ro

llm
en

t
(ii

)
H

IV
vi

ra
l

lo
ad

su
p

p
re

ss
io

n
(ii

i)
Pr

op
or

tio
n

sw
itc

he
d

to
se

co
nd

-li
ne

A
RT

(iv
)

Pr
op

or
tio

n
of

re
su

lt
s

p
re

se
nt

in
U

ga
nd

a’
s

C
en

tr
al

Pu
b

lic
H

ea
lt

h
La

b
or

at
or

y
sy

st
em

Q
4

20
19

Point-of-Care HIV Viral Load Testing Clinical Microbiology Reviews

July 2019 Volume 32 Issue 3 e00097-18 cmr.asm.org 11

https://cmr.asm.org


The Role of Nurses and Community Health Care Workers for HIV Care

Early ART programs in LMICs were provided through hospital-based, physician-led
services, in a resource-intense model of HIV care that was neither sustainable nor
scalable. To provide ART to the large numbers of people living with HIV/AIDS in LMICs,
the WHO recommended decentralization and task shifting in public sector ART pro-
grams in 2004 (157, 158). Since then, numerous observational cohorts and clinical trials
have demonstrated that decentralizing ART care from hospitals to primary care clinics
improved retention in care and reduced mortality (159, 160), while nurse-led ART care
is equivalent to physician-led care when measured by clinical and immunological
outcomes (161). In southern and eastern Africa, nurses now routinely manage ART
initiation and HIV care, as well as screening for and treating TB, STIs, and noncommu-
nicable diseases among PLHIV.

As ART programs have matured, decentralization and task shifting have been
integrated into differentiated care services (156). These services aim to meet the various
needs of clients by adapting the location of care and ART delivery, the person providing
care, and the interval between clinical visits and ART collection (162). Differentiated
care services may be based in clinical or community settings, may involve health care
workers or lay community health workers (CHWs), and include services for HIV preven-
tion, testing and treatment (142). Examples of differentiated care for ART delivery in
LMICs include community-based ART clubs (163), community ART delivery programs
(164), streamlined ART pick-up, and multimonth prescriptions (165). Home-based ART
provided by trained CHWs has also been found to be equivalent to physician-led care
(166). South Africa has been implementing fully automated kiosks for dispensing ART
with support provided via telemedicine interactions between clients and off-site phar-
macists (167). These strategies can make treatment less burdensome for stable, sup-
pressed patients who can receive longer refills and care closer to home, increase
availability of staff for patients in need for more intensive follow-up, and reduce health
care costs through appointment spacing and task shifting (103, 166, 168).

Use of POC Assays by Nurses and Health Care Workers within HIV Programs

A key component of decentralized, differentiated care services has been the devel-
opment of POC technologies that have enabled testing to be conducted by nonlabo-
ratory staff in both clinic and community settings (12). The use of antibody-based POC
HIV tests by trained lay workers has been successful and recommended by the WHO
(117, 169). The ease of use and portability of RDTs has allowed them to be implemented
in large community-based HIV testing campaigns to increase overall HIV testing
coverage for achieving the first 90-90-90 target (170–172). Despite the simplicity of
RDTs, quality assurance and supply chain management have remained challenging in
programmatic settings (173, 174).

The WHO recommends CD4 count testing to stage disease at HIV diagnosis, and
rapid, portable POC CD4 count assays have been developed to measure CD4 counts
using venous or capillary whole blood in under 30 min (175, 176). The Pima CD4
(Abbott, Chicago, IL) can be operated by nurses in primary care clinics (177, 178) and
had acceptable performance characteristics in two meta-analyses, with sensitivities to
detect a CD4 count of �350 cells/mm3 of 93% and 92% and specificities of 86% and
87% (175, 176). POC CD4 count testing has been accepted by patients and health care
workers in many resource-limited settings (176), although failure rates ranging from 0%
to 23.3% have been reported (179). These may have been due to deficiencies in quality
assurance procedures, such as inadequate sample collection or machine calibration
(176, 179).

When CD4 counts were used to determine ART eligibility, POC CD4 count testing
was shown to increase retention in pre-ART care and increase ART initiation (104, 180),
particularly when performed by lay workers in home-based HIV testing services (181).
POC CD4 count assays have been used by nurses within health care facilities to allow
same-day ART initiation, which was associated with increased overall ART initiation
(182) and improved retention in care and subsequent viral suppression (183). In
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addition, availability of POC creatinine, alanine aminotransferase, and hemoglobin
assays has similarly facilitated decentralized access to clinical monitoring. With the
universal test-and-treat strategy, whereby all people living with HIV are started on ART,
CD4 count testing remains important for staging HIV disease and assessing eligibility
for prophylactic treatment (184). Four large trials of the universal test-and-treat strategy
in southern and eastern Africa (ANRS TasP, SEARCH, BCPP, and MaxART) have incor-
porated POC CD4 count testing by nurses or lay health care workers into community-,
home-, and facility-based HIV testing strategies (185). In Lesotho, a home-based,
same-day ART initiation program in which nurses performed POC CD4 count and
creatinine and hemoglobin testing improved ART initiation, retention in care, and viral
suppression (186).

Looking Ahead: The Role of POC HIV Viral Load Testing within Differentiated Care
Services

While nurses and CHWs have used POC assays to improve HIV testing and ART
initiation, there is less evidence for implementing POC diagnostics to monitor PLHIV
receiving ART. Evidence for the feasibility of task shifting POC viral load testing is
lacking (50), although some testing has occurred within primary care or mobile clinics
(24, 38, 43). The development of more portable assays and use of finger prick whole-
blood testing should make POC viral load testing easier for nurses and CHWs in a range
of settings (30). POC viral load assays have the potential to streamline ART monitoring
and quickly triage patients into more or less intense care pathways (187), a strategy
known as “viral-load informed differentiated care” (133, 162). The International AIDS
Society (IAS) provides a decision framework for designing differentiated care services,
which encourages policy makers to focus on the clinical characteristics, subpopulations,
and contextual factors surrounding clients and to adapt the location of services, the
care provider, and the services offered accordingly (Fig. 3) (162, 187).

Clinical trials of POC viral load testing may facilitate task shifting to nurses and
referral into differentiated care programs (Table 3) (47, 48, 188–190). In one study,
integrated POC monitoring using POC CD4 count (Pima), POC creatinine, and POC HIV
viral load (Xpert HIV-1) is being evaluated to rapidly identify stable patients who can be
seen by an enrolled/auxiliary nurse every 2 months and then be down-referred to a
community ART delivery program, in which they are seen by a nurse every 6 months
(Fig. 4) (188). The primary outcome is viral suppression and retention in care after
12 months of POC monitoring, with secondary outcomes including costs of POC
monitoring, time to receipt of results, time to adherence counseling, and time to switch

FIG 3 The building blocks of differentiated ART delivery with POC HIV viral load testing. OI, opportunistic
infection. (Adapted from reference 187 with permission.)
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to second-line ART. If found to be cost-effective, models of differentiated care with POC
HIV viral load monitoring could be used to help achieve the 90-90-90 targets.

EVIDENCE FROM MODELING AND COST-EFFECTIVENESS
Role of Modeling in Evaluation of POC HIV Viral Load Testing

Modeling population-level impact and cost-effectiveness plays an important role in
translating clinical trial findings into a broader set of population estimates (47–48,
188–191). Through modeling, trial results can be translated into standardized impact
metrics such as disability-adjusted life years (DALYs) averted or quality-adjusted life
years (QALYs) gained, as well as indirect benefits such as reduced HIV transmission (48,
136, 137, 192, 193). Models are typically individual based and simulate a cohort of
individuals with HIV or a population with births, deaths, and dynamic disease trans-
mission (194–198). Modeling can help to define the timing and detection threshold for
POC viral load assays, based on cost-effectiveness analyses that account for the higher
cost of second-line ART (194–198). The impact of POC HIV viral load testing on health
outcomes can be estimated at multiple levels, including individual patients, the pop-
ulation, or national health systems.

Evidence from Modeling Studies for Benefit of POC HIV Viral Load Monitoring

The direct health gains from replacing clinical or laboratory-based CD4 count-based
monitoring with laboratory-based viral load monitoring appear to be modest. Random-
ized trials in Zimbabwe and Uganda (199), Cameroon (200), and Thailand (201) found
CD4 count-based monitoring to be noninferior to viral load monitoring and not
substantially different from clinical monitoring over the first 3 years of ART. In contrast
to centralized testing, POC HIV viral load testing provides results more rapidly, allowing
for earlier adherence counseling and/or ART regimen switching to reduce the risk of HIV
drug resistance, worsening immunosuppression, and onward HIV transmission. In
multiple modeling studies, the benefits at the individual level of POC HIV viral load
testing were estimated to be small relative to the impact of increasing coverage and
retention on first-line ART (135, 194, 197, 198, 202). However, these studies were based
on modeled estimates of the effectiveness of POC viral load testing, which were not
informed by clinical trial results.

The estimated impact of laboratory-based (203–210) HIV viral load on transmission
of HIV is beneficial but modest. In Malawi, 0.8% of HIV infections between 2017 and
2020 could have been averted through immediate scale-up of annual lab-based HIV
viral load monitoring (210). A modeling analysis suggested that faster switching to
second-line ART, more effective adherence counseling, and reduced transmission
through viral suppression each contributed similar health gains, 0.15 QALY per PLHIV
receiving ART (197).

FIG 4 A conceptual model of integrated point-of-care testing within differentiated care.
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The largest effects of POC HIV viral load testing may come from expanding access
to viral load-informed differentiated care. In clinical trials (199–201, 211, 212) and
modeling (139, 203–208, 213–216) of laboratory-based HIV viral load monitoring, the
ability to implement differentiated care had an impact comparable to or greater than
the direct health impact of viral load monitoring (217). Similar trends have emerged for
models evaluating POC HIV viral load testing (135, 198). However, centralized HIV viral
load testing involves sample transportation and transfer of results (218), which has
been challenging to forecast and adds uncertainty to model estimates (48, 137, 192,
193, 219, 220).

Projections of Cost-Effectiveness Analysis for POC HIV Viral Load Implementation

Modeling studies have estimated the cost-effectiveness of laboratory-based viral
load monitoring (139, 203–209, 213–216) and, more recently, POC viral load monitoring
(135, 194, 197, 198, 202). Models incorporating health systems effects of monitoring,
such as differentiated care, find increased evidence of cost-effectiveness (217). A
comparison of three independently developed mathematical models estimated that
implementing laboratory-based HIV viral load monitoring was not cost-effective prior
to universal test-and-treat guidelines and concluded that a lack of resources to provide
viral load monitoring should not preclude further expansion of ART (202, 221). In the
era of the universal test-and-treat strategy, viral load monitoring is cost-effective at the
individual level, assuming similar costs for laboratory-based and POC viral load testing
(135, 194, 197, 198, 202). Annual viral load testing was generally found to be more
cost-effective than 6-monthly viral load testing (197, 202). Patient monitoring contrib-
utes a small fraction of overall HIV care costs and thus can become cost-effective and
even cost-saving when it enables other aspects of HIV care to become more efficient
(197). Enabling viral load-informed differentiated care may be critical to making viral
load monitoring more cost-effective and potentially cost-saving (103, 135, 166, 168,
187). As the technology becomes more widely available, new synergies between POC
HIV viral load testing and optimal health care delivery may emerge. However, the
rollout of dolutegravir-based first-line ART, which appears to have a lower risk of
acquired drug resistance, may impact the role of HIV viral load monitoring (222, 223).

ADDITIONAL DIAGNOSTICS NEEDED FOR HIV MONITORING

In LMICs, the management of PLHIV who are identified as having unsuppressed HIV
viral loads is complicated by the lack of objective measures of drug adherence and HIV
drug resistance, which continues to emerge in LMICs (221, 224). The technological
advances that have made POC NAAT available are also applicable to the development
of POC HIV drug resistance assays that may allow for decentralized HIV resistance
testing (225). Several assays are in development, while target mutations need to be fully
characterized for specific drugs and drug regimens. In addition, being able to more
accurately and objectively assess drug adherence may become more critical (137), and
there are efforts to develop POC tests to measure drug concentrations of various
antiretrovirals (ARVs) (226).

Additional tests could be considered for POC delivery to ensure more complete
assessment of the health of PLHIV. Offering a package of services to identify patients
with advanced HIV disease (defined as CD4 count less than 200 cells/ml) and test for
common opportunistic infections is critical (158). Fortunately, POC CD4 count, POC
testing for TB using GeneXpert or the lipoarabinomannan (LAM) assay, and screening
for cryptococcal meningitis using a cryptococcal antigen RDT are available (184, 227,
228).

Integrated POC testing to include recommended clinical chemistry or hematology
tests may be important to further improve HIV treatment services (229). Simple POC
hemoglobin assays are becoming more widespread in primary care services and can be
used for the monitoring PLHIV receiving zidovudine. For patients receiving tenofovir-
based ART, annual creatinine measurement is recommended by the WHO to monitor
for nephrotoxicity. Simple POC creatinine assays have been developed, but perfor-
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mance in the field requires further evaluation (230). A paper-based test or RDT for
measurement of alanine transaminase could offer more reliable access for monitoring
of liver function (231, 232). As PLHIV are living longer due to better access to life-saving
ART, management of noncommunicable diseases, such as diabetes and cardiovascular
disease, may also benefit from an existing decentralized POC testing infrastructure,
such as for lipids and hemoglobin A1c testing (233).

RESEARCH NEEDS AND PRIORITIES

POC HIV viral load testing may be an essential tool for accelerating declines in
HIV/AIDS burden and incidence. However, since technologies and implementation are
rapidly evolving, many clinical, translational, and basic science questions remain. In
Table 4, we list some of the key research needs and priorities for each of the domains
presented in this review. In general, these research questions fall into the domains of
technology development, clinical testing, and implementation science.

Several technology development questions pertain to the future design of devices
and potential use of easily obtainable finger prick capillary blood. Additional benefits
could be achieved by reducing the processing time and developing a more durable
system for use in community-based settings. Clinical research questions pertain to the
accuracy of individual tests when used at the clinical point of care. Perhaps one of the
most pressing research priorities is having a better understanding of the efficacy of
clinic-based HIV viral load testing in terms of patient outcomes, and several clinical trials
will provide results soon. Implementation science research questions pertain to how
frequently HIV viral load testing should be performed and whether current or future
devices may allow for further decentralization of testing. Finally, the cost-effectiveness
of POC HIV viral load testing will need to be explored with empirical clinical trial data
and mathematical modeling.

CONCLUSIONS

While the rapid expansion of access to ART remains the priority, access to HIV viral
load testing will be critical for ensuring HIV treatment success, maintaining virological
suppression, and ending the HIV/AIDS pandemic. Given the complexity and delays
associated with laboratory-based HIV viral load testing, rapid clinic-based POC testing
holds promise for facilitating HIV management and improving patient outcomes. In this
review, we have highlighted the current knowledge of the technology for POC HIV viral
load testing and offered opportunities and priorities for further exploration.

Through the development of better diagnostic tests and a greater understanding of
the clinical role of POC HIV viral load testing, we may be able to devise more advanced
and specific solutions to HIV/AIDS. By synthesizing the expanding knowledge and
addressing existing research gaps of POC HIV viral load testing, the research and public

TABLE 4 Priority research questions for point-of-care HIV viral load testing

Category Questions

Technology development Can a rapid test be valid and reliable when used on finger prick capillary blood?
Can the test processing time be reduced to �30 min?
Can the device be made portable and rugged enough for use in community settings?
Can the technology assist in communicating the result to the patients more efficiently?
Can proxy measures, such as virion markers, provide adequate measures of viral load?

Clinical testing Are clinic personnel capable of running and interpreting rapid viral load tests?
How accurate are current POC HIV viral load devices when used in clinical settings?
Can POC HIV viral load assays be efficiently integrated with other required tests?
Does clinic-based HIV viral load monitoring improve patient outcomes?

Implementation science How do point-of-care viral load tests fit within models of differentiated HIV care?
What is the optimal interval for clinic-based HIV viral load testing?
Is it possible to conduct viral load testing in decentralized locations for ART refills?
Is the implementation of POC viral load testing cost-effective?
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health communities may move forward together on developing sustainable solutions
to end the HIV/AIDS pandemic.
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